
(24) Modelling And Regression

Description

Our Modelling Study “Influence of Fish Consumption on Students’
PISA Scores” as An Introductory Example

I will soon present our modelling study that attempts to present the variation in Covid-19 mortality rates in the
first wave up to summer 2020. To illustrate this method, I use here a study we conducted some time ago [1]. My
colleague Volker Schmiedel, who is very interested in the importance of omega-3 fatty acids, gave the impetus
for this study. We asked the simple question:

Does the availability of omega-3 fatty acids in a country affect children’s PISA scores?

PISA (Programme for International Student Assessment) is, as is well known, an internationally conducted,
standardized test to examine children’s abilities at school. Volker Schmiedel came up with the idea of correlating
the fish consumption of a country with the PISA scores of that country and discovered a significant correlation.
The simple correlation between fish consumption and a country’s PISA score is r = .57, which is not only
significant, but also quite highly so. In fact, surprisingly high. After all, why should fish consumption be related
to students’ knowledge at school? The correlation might be understandable only because of the omega-3 fatty
acids, which are mainly found in oily fish, but also in dark green plants, algae and everything that feeds on them.
It is not easy to measure omega-3 levels in a population. You would have to take blood from a representative
sample of the population and determine the omega-3 content in, for example, the membranes of red blood cells.
To my knowledge, no one has ever done this systematically across a variety of countries. Fish consumption is
easier to measure, it is a so-called proxy variable. Because fish is a main supplier of omega-3 fatty acids. And
omega-3 fatty acids are important for us as essential fatty acids. We have to take them in through food because
we cannot produce them ourselves. Since the industrial revolution at the end of the 18th century, omega-3 intake
has decreased [2]. Omega-3 is not only central to the immune system because it is the precursor substance for all
cytokines with anti-inflammatory effects. It is especially important for nerve growth in children and learning in
old age. It is also important for maintaining cognitive performance. For example, the level of omega-3 in
mothers’ milk can predict the intelligence of schoolchildren to an astonishing degree [3, 4].

For all these reasons, Schmiedel’s consideration was of course very clever: it is possible that the PISA score, as
an expression of the cognitive performance level of children, is related, among other things, to how much omega-
3 fatty acids they consume, roughly measured by the fish consumption of a nation. Now, of course, the question
immediately arises: What influences the PISA score in particular? And if we know that, does fish consumption
play a role in addition to that?

The general principle: linear combination of weighted influence of variables

The general mathematical estimation formula for such a question is:

y = a + ?1x1 + ?2x2 + ?3x3 +… ?nxn +e.  (Equation 1)
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“y” here is, in general terms, the variable you want to clarify, i.e., for example, the variation in students’ PISA
scores, or in Covid-19 deaths in Europe.

“a” is a constant, or the so-called intercept. Graphically, it would be the point at which a regression line intersects
the x-axis, indicating the empirical zero point. One needs this value if one wants to make concrete calculations
for single individuals, or if one wants to use a found regression equation in the future or with another data set to
calculate values. At the moment, this value is not so important for understanding the general principle of
clarifying variation.

The so-called “?” weights are the regression weights or regression coefficients. If they are standardized, i.e. they
can assume a distribution between -1 and +1, they are usually rendered with the Greek ? symbol. If they are
unstandardized, then b is usually noted. They indicate how great the influence of a variable x on the criterion y is.
If, for example, a regression weight were only 0.0001, then the influence of the variable with this weight would
be understandably very small. If ? is very large, e.g. 0.8, then the influence of this variable is also relatively large.
If the weight is positive, then the variable has a positive influence: i.e. the greater x, the greater y. If the weight is
negative, then the variable has a negative influence: thus, the greater x, the smaller y.

Now you can see immediately from equation (1) that this is a linear combination of variables x1 to xn, basically
any number of variables or predictors that can be used to explain y, the criterion. That is the charm of modelling:
You can use as many variables as you can collect for the explanation. There is a practical limit: Since these
regression weights are not simply found in the open, but have to be estimated by a computationally intensive
iteration procedure, you need a correspondingly large number of data sets to be able to make this estimate in a
stable manner.

Technically speaking, the least squares method is usually used for this: The computer averages the individual
variables, then uses different regression weights while holding everything else constant, squares the difference
between the mean and the weighted mean, and does this iteratively until the difference is a minimum. When such
procedures still had to be calculated by hand, it was very time-consuming and limited the number of variables for
that reason alone. Today, computers can do it in fractions of a second. But you still have to be aware of the fact
that the computer only calculates with what is available. And to be able to perform a stable estimation, the
computer needs – rule of thumb – about 10 cases per influence variable to be estimated or the associated
regression weight ? [5].

Then, at the very end of equation (1), we see the “e”, sometimes represented as the Greek epsilon – e -. This is
universal statistical language for “error term” or “residual”. This is the portion of the variation that cannot be
explained by these variables.

This general principle of linear combination of weighted influence variables to “predict”, i.e. explain, an
individual value applies to all modelling. In some regression methods, the combination of the individual
prediction terms is more complicated. In non-linear regressions, for example, there are quadratic, cubic or other
function terms. In logistic regressions, these regression elements are exponents of Euler’s number e. But the
principle is always the same: A set of variables is used to “predict” in an optimal combination a variable to be
explained, the criterion or dependent variable, that is, to elucidate as much as possible in its range of variation or
variance.

Concretely, using the PISA study:

We collected PISA scores from 64 countries, from which we also had information on fish consumption. In
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addition, we used data on economic development, in this case gross domestic product (because this indirectly
determines how much funding a country has), data on the availability of the internet in a country, as an indicator
of technological development, and the breastfeeding rate. All these data are available from public sources and are
intuitively and theoretically plausible influencing factors whose impact on a country’s PISA score can be
estimated.

It can be seen at this point that the variables one feeds into such a model also depend on the question. This in turn
depends on theoretical knowledge and conceptual assumptions, and not infrequently, as in our case, also on the
availability of data.

By the way, the individual units, i.e. cases, in this study are not individual children but countries with their PISA
averages. Usually in such studies, individuals are the unit of analysis. In the PISA study and also in our Covid-19
modelling, countries are the units of analysis or “cases”.

We have now calculated a linear regression model as described above. I reproduce the original Table III of the
publication here as Table 1 and will then explain it:

Table 1 – The Table III of the original publication with the model parameters of the regression
analysis

You can see: we used five variables for prediction, GDP-Gross Domestic Product, a country’s internet coverage,
the percentage of children in a country who were breastfed, and at the end, a country’s fish consumption, roughly
measured in 6 reasonably continuously increasing categories (2-5 kg per person per year, 5-10 kg, 10-20 kg, 20-
30 kg, 30-60 kg, and more than 60 kg).

The latter is important because linear regression models have several assumptions. One is that the criterion
variables and all other variables must be reasonably normally distributed, and that the variables one uses for
prediction must be continuous variables. If they are not continuous but categorical, then you have to recode them
into so-called dummy variables, i.e. 1-0 codings (or -1 and +1) for individual categories, which are then
continuous again. In our case, I used the fish consumption variable both as a continuous variable and as a dummy-
coded variable for the individual categories. The difference is negligible. Therefore, I report the model for the
continuous variable in the publication and discuss the potential problem in the discussion because a reviewer had
insisted on it.

We see: The model is highly significant and can even resolve 72% of the variance with R2 = .72. This model
statistic is the first important finding. It tells us whether the statistical model is firstly significant and secondly
how high the multiple correlation R, i.e. the correlation of all variables together with the criterion, is. Squared,
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each correlation coefficient gives the variance explained. Example: let a person’s intelligence be correlated with
his subsequent income about r = .3 – which, incidentally, roughly corresponds to the empirical ratios; then the
variance thus elucidated would be r2 = .32 = .09 or 9%.

In our case, R2 = .72 (the multiple correlation coefficient, which describes the influence of several variables
simultaneously, is always capitalized). The variance elucidation with 72% is considerable. This is because only 2
variables are needed: internet coverage, which is a proxy for the economic-technical development of a country,
and fish consumption. This more detailed insight is the second important insight that statistical modelling
provides. It tells us which variables we use in our modelling contribute to this variance explanation, and how
much.

You can see from Table 1 above that the beta weight for internet coverage is quite high at 0.65. This variable is
also highly significant, while gross national product remains irrelevant as a predictor. This is because internet
coverage and gross national product are very highly correlated with each other with r = .87 (this is explained in
Table 2 of the publication) and in this case the model uses the variable that is a better predictor. This
automatically drops the other out of the equation. I have also done analyses with gross national product only. But
these have slightly lower variance explanations.

Now the analytical idea of this analysis would be: if a country’s PISA score can be explained by these social
variables (GDP, internet coverage, breastfeeding rate), then fish consumption should be irrelevant as a predictor.
What we see, however, is: the breastfeeding rate hardly plays a role. The beta weight of 0.03 is very small and
not significant. But fish consumption is a significant predictor at beta = .20.

In fact, one can take a quasi-experimental approach in such analyses and ask, for example: If you control for all
social variables, is fish consumption still a significant predictor? In such a case, one proceeds step by step or
forces the system to include the social variables first and then, in the last place, or even in the last step, the
variable of interest. This is fish consumption here. That’s what I did here, and you can see: Even if you include
all the other variables first, fish consumption is still a significant predictor. It explains an additional 4% of the
variance. So a model without the predictor “fish consumption” would only have an R2 = .68.

Still high, but lower. This allows us to conclude: When social-economic progress is taken into account, fish
consumption, and thus presumably omega-3 availability, is an additional, important predictor. The fact that these
variables together can explain 72% of the variance is, in my view, astonishing. Of course, other factors also play
a role: how good the school system is, how good the teacher training is, how motivated the teachers are, how
large the classes are, how long children sleep, etc. But all of this we did not capture, or rather, we had no data on
it. We had data on school satisfaction from some countries and repeated the analysis with school satisfaction for
these countries. But the picture did not change, and school satisfaction was not a significant predictor.

I have given the parameters or raw regression weights in the first place in Table 1 above. These are not
standardized and provide information on how much a variable would be weighted in an actual prediction
calculation.

Then follows the standard error of this estimate. This is needed for the significance calculation, which is kindly
supplied by the statistics program. The distribution of these parameters follows the T-distribution, a statistical
distribution that is similar to the normal distribution, only steeper depending on the number of observations.
From it, we can obtain the probability of error: p. It tells us whether a regression weight has a significant, i.e. has
an influence beyond statistical randomness. It is quite possible that a relatively large regression weight is not
significant and, conversely, a very small one is significant. This then means: The influence is present, but
statistically difficult to distinguish from a random variation. Or: The influence is very small, but clearly beyond
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random fluctuation.

The standardised beta weights that then follow in the next column can be interpreted as partial correlation
coefficients. They represent the correlation of the corresponding variable with the criterion, i.e. in this case with
the PISA score of a country, if the influence of all other variables is kept statistically constant or factored out.
(For the variables also have correlations with each other, which are then controlled for.)

You can also illustrate the principle graphically in a so-called Venn diagram, which I reproduce here in Fig. 1.

Fig. 1 – Venn diagram of the correlations of different predictors x1-x4 with a variable y to be
elucidated

The blue circle y represents our target variable, the criterion. The variables x1 to x4 are possible predictors. They
have a certain correlation with the criterion – the overlap range – and often also a correlation with other variables.
For example, the own contribution of x2 that area not covered by either x1 or x3 would be relatively small. The
own contribution of x3 is also not as high as it first appears, because the correlation with x2 is very high. This is
called “collinearity”, a common high correlation. Intelligent modelling checks this and uses, out of 2 possible
variables, the one with the highest own explanatory value. In our analysis, this was internet coverage. Variable x4
, on the other hand, would have a relatively high explanatory value in this graphical example and its own
independent correlation with criterion y, without being related to the other variables. The pure blue of y not
covered by other overlapping circles, that would be the proportion of unexplained variance or in the individual
case, the residuals.

To understand residuals, it is useful to work through a concrete regression equation. We do this for the examples
of China and Qatar from our dataset:

China, the upward outlier in Figure 3 below, has the highest PISA score in our dataset at 567.66 and Qatar the
lowest at 308. Breastfeeding rates are similar, as is internet coverage, 87% in Qatar, 74% in China, but GDP is
very different, at $100,260 Million for Qatar and $6,747 Million for China (data from 2013). Now you can see in
Table 2: I log-transformed the value for the gross national product and for the internet coverage because the data
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were too skewed and thus achieved an approximate normal distribution. Fish consumption is a 6-level,
approximately continuous variable.

Country PISA value Fish consumption Breastfeeding rate GDP transf. Intern. transf.

China 567.66 5 28% 8.816 4.304

Qatar 398 4 29% 11.515 4.466
Table 2 – Original data for 2 countries from our PISA study

We now use equation (1) and the data from Table 1, which give the original regression weights:

yChina = 117.1 + 5.65*8.816 + 62.3*4.304 + 0.1*28 + 9.8*5 +e =

                      117.1 + 49.81 + 268.14 + 2.8 + 49 + e =

                      486.85 +e

          yChina– 486.85 = e

        567.66 – 486.85 = e

          e = 80.81

So the regression equation for China gives a PISA score 80.81 points lower than it actually is. This is the upward
outlier in Fig. 3 below, which is pretty much at 80 points, or in the histogram in Fig. 2, the value at the far right
of the distribution.

Whoever wishes can now do the same with the data for Qatar and will find that the equation gives a negative
error or residual of about -100 points, i.e. Qatar’s PISA scores are estimated by the equation to be about 100
points higher than they are in reality. (“Reality” here means empirical reality.)

It would now be a question of more sophisticated analysis as to why this is the case with these outliers. It could
be, for instance, that Chinese data is unreliable. That the school system is much better, etc.

Anyway, this is how you see: Regression equations can be used for individual prediction, for example of new
data sets, which is often used in industry in process control. And in this way one also understands the function
and arithmetic magnitude of error terms or residuals e. They represent the error in the individual case, and the
unexplained variance in the case of a total data set.

Consider prerequisites

Now, one thing to bear in mind about such an analysis is that it will only yield valid analysis results if the
preconditions are met. I already mentioned two that one has to check before the analysis: Are the variables
reasonably normally distributed? They were in our case. I say “reasonably” because the routines react relatively
robustly to a violation of this assumption. If the normal distribution, especially of the criterion variable, is
strongly violated, one can use a trick and transform it logarithmically. Then it will often be normally distributed.
You can do the same with the other variables.

Furthermore, one takes a look at the residuals, i.e. the unexplained portions, those 28% of the variance, in our
case, that cannot be explained by these variables. They must be reasonably normally distributed. Publications
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often show this graphically in the appendices. Similarly, a plot of the residuals against the predicted values
should not reveal any pattern. For if patterns are discernible, the assumption that the relationship is nonlinear is
likely.

I reproduce here in Figures 2 and 3 the histogram of the residuals and the plot of the residuals vs. the predicted
values:

Fig. 2 – Histogram of residuals
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Fig. 3 – Plot of residuals vs. predicted values

You can see from Fig. 2: the residuals are reasonably normally distributed around 0. There are some outliers
where the predicted PISA score is almost 100 points too high or too low. But otherwise the model fits quite well.
You can also see these outliers in Figure 3. You can also look at the outliers with statistics programs, in our case
the downward outlier is Qatar and the upward outlier is China. But otherwise, no pattern is discernible in this
plot. A pattern would be something like a cloud rising continuously to one side.

The analytical concepts of linear models

Linear models can thus serve several purposes:

1. They are used to estimate the significance of possible predictor variables or independent variables and thus
their influence on the criterion or independent variable. In clinical studies and experiments, for example,
this can also be used to detect the influence of an experimental manipulation. This is then represented by a
categorical dummy variable that is 1/0-coded. The influence of a variable is shown by the size (and of
course the significance) of the regression weights. With standardized regression weights, denoted by b, this
can be done immediately. This is because the regression weights can be interpreted as partial correlation
coefficients, i.e. as the correlation of the predictor variable with the criterion variable when the influences
of all other variables are statistically controlled. In our example: fish consumption in a country correlates
with the country’s PISA score (and vice versa) with 0.20 if all the other variables in the equation are
statistically controlled. That is, when their influence on fish consumption has been removed. Thus, one can
use the magnitude of ? as an estimator for the influence of a variable. In the picture of Fig. 1: It is the
overlaps of a circle with the y-circle without the share of other overlapping circles. If, as is often the case
with other regression models, the weights are not standardized, then one can use the relative size as a
guide, i.e. the size relative to all other regression weights.

2. One can use a regression equation to make predictions for individual cases. This is mainly used in process
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control, when you have determined a regression equation from standardized data sets that you can then
apply to new data sets. For analytical research, this is rather less important. I used this approach above to
make clear what role residuals play.

3. If you solve the entire equation over all data sets and estimate the statistical model as a whole, then you can
see how well the model fits the data overall. We saw from the model of the elucidation of the PISA score
that a relatively high explanation of variation is possible with this model. This analytical step is called
“goodness of fit”, or “model goodness”, or predictive power of the model. It has two main components: an
R2 value and F or Chi2 value with an associated p-value or probability of error. The R2 value is the squared
multiple correlation coefficient, i.e. the correlation of all variables used in the equation together with the
criterion or dependent variable. It is squared because a squared correlation coefficient can be interpreted as
the proportion of variance explained or variation explained. The multiple correlation coefficient R2 thus
explains how much variance or variation, e.g. in the PISA scores of individual countries, we can explain
with the given variables, in our example 72% of the variation in the PISA scores. The fact that we do not
know and have not recorded all the variables that have a possible influence is expressed in the unexplained
variance and, at the individual level, in the error terms or residuals e.
This R2 value is distributed according to the F or the chi-square distribution, depending on the model.
These distributions are known. Therefore, one also normalizes them. Then one can define the area under
the curve as “1” and thus as probability. Then one can also define the area from a certain ordinate as a
probability, and if a certain value exceeds a limit or the area to the right of it is very small, then the
probability of such a value is very small. This can then be used to determine the probability of error of an
empirically found R2-value.
The overall model thus has two important ratios: the R2-value, the size of the variance explanation, and the
significance or statistical probability of error of this value. 
In fact, it depends on the size of the correlation, but also on the size of the data set, whether a multiple
correlation coefficient R2 is significant. I have already dealt with this several times under the topic of
“power” or “statistical power”. This also applies here: With a very large number of cases or data sets, one
can also get very small and irrelevant correlations, e.g. R2 = 0.002, i.e. 0.2 % of the variance explanation,
significant. Conversely, a large correlation may miss significance if the data set is small. Ideally, we expect
high variance elucidation to be significant at the same time.

In research, we are mostly interested in 1. – size of associations of predictors with the dependent variable or
outcome – and 3. – amount of variance explained by a model.

In medical and social science research, it is rare to find models that explain more than one-third to one-half of the
variance, and usually require something between 3 and 10 variables at least – and a factor of 10 to 20 more cases.

Large epidemiological surveys usually have many thousands of cases and can therefore also model numerous
possible influencing variables or predictors. The problem with all these studies is always: you never know
whether you have captured the really interesting and important variables and whether you are not missing an
important influencing variable. There is only one indirect way to estimate this, namely R2, the amount of
variance explained. If this is high, the probability that one has overlooked something important is low.

In our example above, we had 5 variables and 64 cases, so enough power to estimate the parameters.

We have now discussed classical linear regression using this example. This is the basic structure. It can be
extended in very different ways, and the principle is always basically the same.

When one evaluates clinical trials or experiments, one usually introduces the variable that codes for the
intervention as an additional predictor alongside predictors of interest. If this is significant, then you know that
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the intervention had an impact, and you can also estimate the strength of the impact.

If the distribution of the criterion or target variable does not follow the normal distribution, then the regression
models are formalized slightly differently. One then speaks of the “generalized linear or non-linear model”. For
example, one can calculate regressions on variables that follow a Poisson distribution, a gamma distribution, a
logistic or other distribution. Then the predictors are not coupled with a simple linear combination, but are either
first transformed with a logarithmic transformation and then additively combined. In the case of regressions that
follow a logistic distribution, the regression elements are linearly connected exponents of the natural number e. In
the case of nonlinear regressions, the regression elements are fitted to a suitable power.

But the important thing is to understand the principle I was trying to convey here: it is always a linear, or non-
linear, combination of weighted predictive terms to resolve variance in a criterion. Sometime in the 1960s, it was
also shown arithmetically that the analysis of variance and the regression analysis, which had been so popular
until then, are conceptually equivalent [6]. Since then, one speaks of the “General Linear Model” or the
“Generalized Linear Model”. It is perhaps the most powerful tool for elucidating multiple influences on a
variable of interest.
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